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Abstract: 

The aims of the present paper is to solve the problem of the group classification of the 

general Burgers’ equation 𝑢𝑡 = 𝑓(𝑥, 𝑢)𝑢𝑥
2 + 𝑔(𝑥, 𝑢)𝑢𝑥𝑥, where 𝑓 𝑎𝑛𝑑 𝑔 are arbitrary 

smooth functions of the variables 𝑥 𝑎𝑛𝑑 𝑢, by using Lie method. The paper is one of 

the few applications of an algebraic approach to the problem of group classification: 

We followed the analysis mathematical method using the method of preliminary group 

classification. A number of new interesting nonlinear invariant models which have 

nontrivial invariance algebras are obtained. The result of the work is a wide class of 

equations summarized in table form. 

Key words: Infinitesimal generator, Symmetries of Burgers’ equation, optimal system, 

group classification of algebra. 

Introduction:  

 It is well known that the symmetry group method plays an important role in the 

analysis of differential equations. The history of group classification methods goes 

back to Sophus Lie. The first paper on this subject is  S.Lie ,Arech(1881), where Lie 

proves that a linear two-dimensional second-order PDE may admit at most a three-

parameter invariance group (apart from the trivial infinite parameter symmetry group, 

which is due to linearity). He computed the maximal invariance group of the one-

dimensional heat conductivity equation and utilized this symmetry to construct its 

explicit solutions. Saying it the modern way, he performed symmetry reduction of the 
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heat equation. Nowadays symmetry reduction is one of the most powerful tools for 

solving nonlinear partial differential equations (PDEs). Recently, there have been 

several generalizations of the classical Lie group method for symmetry reductions. 

L.V.Ovsiannikov (1982), developed the method of partially invariant solutions. This 

approach is based on the concept of an equivalence group. Which is a Lie 

transformation group acting in the extended space of independent variables, functions 

and their derivatives.     And preserving the class of partial differential equations. The 

investigation of the exact solutions plays an important role in the study of nonlinear 

physical systems. A wealth of methods have been developed to find those exact 

physically significant solutions of a PDE though it is rather difficult. Some of the most 

important methods are the inverse scattering method R.M.Miura (1967), Darboux and 

𝐵�̈�𝑐𝑘𝑙𝑢𝑛𝑑  transformations Y.S.Li. (1999), 𝐻𝑖𝑟𝑜𝑡𝑎  bilinear method 

R.Hirota.J.Satsuma(1976) Lie symmetry analysis B.J. Cantwell (2002), etc. the paper 

H.L.J.Liu.J Zhangb(2008), based on the Lie group method. Is investigated a very 

famous an important equation, which is the general Burgers’ equation as the form 

𝑢𝑡 = 𝑎𝑢𝑥
2 + 𝑏𝑢𝑥𝑥 ,                                                                                          (1.1.1) 

where 𝑢 = 𝑢(𝑥, 𝑡) is the unknown real function. 𝑎, 𝑏 ∈ 𝑅 𝑎𝑛𝑑 𝑎𝑏 ≠ 0. In the present 

paper. We consider the general Burgers’ equation as the form 

𝑢𝑡 = 𝑓(𝑥, 𝑢)𝑢𝑥
2 + 𝑔(𝑥, 𝑢)𝑢𝑥𝑥.                                                                     (1.1.2) 

    Where 𝑢 = 𝑢(𝑥, 𝑡)  is the unknown real function, 𝑓 𝑎𝑛𝑑 𝑔  are arbitrary smooth 

functions of the variables 𝑥 𝑎𝑛𝑑 𝑢 . Eq. (1.1.2) represents the Burgers’ equation 

combining both dissipative and nonlinear effects, therefore appears in a wide variety 

of physical applications. So it is important to lucubrate the exact explicit solutions and 

similarity reductions for this equation M.Nadjafikhah (2008) .  Here, we got the 

preliminary group classification of Eq. (1.1.2) by means of Lie point symmetry, and 

the constructed optimal systems of subalgebras. The knowledge of the optimal system 

of subalgebras gives the possibility of constructing the optimal system of solutions 

M.L.G,M.T.A.Valenti (2004) and permits the generation of new solutions starting form 

invariant or non-invariant solutions. 

(1.1) Symmetries of Burgers' Equations: Let a partial differential equation 

contains 𝑝  dependent variables and 𝑞  independent variables. The one 
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parameter Lie group of transformations �̃� = 𝑥𝑖 + 𝑐𝜉𝑖(𝑥, 𝑢) + 𝑜(𝑐2):        �̃�𝛼  =

𝑢𝛼 + 𝜖𝜑𝛼(𝑥, 𝑢) + 𝑜(𝜖2),         (1.2.3) 

Where  𝜉𝑖 =
𝜕�̃�𝑖

𝜕𝜖
|𝜖=0, 𝑖 = 1, … , 𝑝, 𝑎𝑛𝑑 𝜑𝛼 =

𝜕𝑢𝛼

𝜕𝜖
|𝜖=0, 𝛼 = 1, … , 𝑞, are given.  

 The action of the Lie group can be recovered from that of its associated infinitesimal 

generators, we consider general vector field 

𝑉 = ∑ 𝜉𝑖

𝑝

𝑖=1

(𝑥, 𝑢)
𝜕

𝜕𝑥𝑖
+ ∑ 𝜑𝛼

𝑞

𝛼=1

(𝑥, 𝑢)
𝜕

𝜕𝑢𝛼
.                                              (1.2.4) 

   On the space of independent and dependent variables. Therefore, the characteristic 

of the vector field V given by (1.2.4) is the function 

𝑄𝛼(𝑥, (𝑢)(1)) = 𝜑𝛼(𝑥, 𝑢) − ∑ 𝜉𝑖(𝑥, 𝑢)

𝑝

𝑖=1

𝜕𝑢𝛼

𝜕𝑥𝑖
, 𝛼 = 1, … , 𝑞.          (1.2.5) 

       The second prolongation of infinitesimal operator 

𝑋 = 𝜉𝑖(𝑥, 𝑡, 𝑢)
𝜕

𝜕𝑥
+ 𝜉2(𝑥, 𝑡, 𝑢)

𝜕

𝜕𝑡
𝜑(𝑥, 𝑡, 𝑢)

𝜕

𝜕𝑢
.                                      (1.2.6) 

    Obtained via the following prolongation formulas: 

𝑋(2) = 𝑋 + 𝜑𝑥
𝜕

𝜕𝑢𝑥
+ 𝜑𝑡

𝜕

𝜕𝑢𝑡
+ 𝜑𝑥𝑡

𝜕

𝜕𝑢𝑥𝑥
. 

      The coefficients are obtained by  

𝜑𝑡 = 𝐷𝑡𝑄 + 𝜉𝑖𝑢𝑥𝑖 + 𝜉2𝑢𝑡𝑖 ,     𝜑𝑡𝐽 = 𝐷𝑡(𝐷𝐽𝑄) + 𝜉1𝑢𝑥𝑖𝐽 + 𝜉2𝑢𝑡𝑖𝐽.          (1.2.7) 

   Where 𝑄 = 𝜑 − 𝜉1𝑢𝑥 − 𝜉2𝑢𝑡  is the characteristic of the vector field V given by 

(1.2.4). For instance  

𝜑𝑥 = 𝐷𝑥𝜑 − 𝑢𝑥𝐷𝑥𝜉1 − 𝑢𝑡𝐷𝑥𝜉2,                                                                   (1.2.8) 

𝜑𝑡 = 𝐷𝑡𝜑 − 𝑢𝑥𝐷𝑡𝜉1 − 𝑢𝑡𝐷𝑡𝜉2,                                                                      (1.2.9) 

𝜑𝑥𝑥 = 𝐷𝑥𝜑𝑥 − 𝑢𝑥𝑥𝐷𝑥𝜉1 − 𝑢𝑥𝑡𝐷𝑥𝜉2,                                                           (1.2.10) 

𝜑𝑥𝑡 = 𝐷𝑥𝜑𝑥 − 𝑢𝑥𝑥𝐷𝑡𝜉1 − 𝑢𝑥𝑡𝐷𝑡𝜉2,                                                            (1.2.11) 



  

22  

  

where the operators 𝐷𝑥 𝑎𝑛𝑑 𝐷𝑡 denotes the total derivatives with respect to 𝑥 𝑎𝑛𝑑 𝑡: 

𝐷𝑥 =
𝜕

𝜕𝑥
+ 𝑢𝑥

𝜕

𝜕𝑢
+ 𝑢𝑥𝑥

𝜕

𝜕𝑢𝑥
+ 𝑢𝑥𝑡

𝜕

𝜕𝑢𝑡
+ ⋯,    

𝐷𝑡 =
𝜕

𝜕𝑡
+ 𝑢𝑡

𝜕

𝜕𝑢
+ 𝑢𝑡𝑡

𝜕

𝜕𝑢𝑡
+ 𝑢𝑡𝑥

𝜕

𝜕𝑢𝑥
+ ⋯, 

by the theorems, in Y.S.Li. (1999). 𝑋(2)[𝑢𝑡 − 𝑓(𝑥, 𝑢)𝑢𝑥
2 − 𝑔(𝑥, 𝑢)𝑢𝑥𝑥]|(1,2) = 0. 

Since  

𝑋(2)[𝑢𝑡 − 𝑓(𝑥, 𝑢)𝑢𝑥
2 − 𝑔(𝑥, 𝑢)𝑢𝑥𝑥]

= 𝜑𝑡 − (𝑓𝑥𝜉1 + 𝑓𝑢𝜑)𝑢𝑥
2 − (𝑔𝑥𝜉1 + 𝑔𝑢𝜑)𝑢𝑥𝑥 − 2𝑓𝜑𝑥𝑢𝑥 − 𝑔𝜑𝑥𝑥, 

therefore we obtain the following determining function: 

[𝜑𝑡 − (𝑓𝑥𝜉1 + 𝑓𝑢𝜑)𝑢𝑥
2 − (𝑔𝑥𝜉1 + 𝑔𝑢𝜑)𝑢𝑥𝑥 − 2𝑓𝜑𝑥𝑢𝑥 − 𝑔𝜑𝑥𝑥]|(1,2)

= 0.                                                                                      (1.2.12) 

     In the case of arbitrary 𝑓(𝑥, 𝑢) 𝑎𝑛𝑑 𝑔(𝑥, 𝑢) it follows that 

𝜉1 = 𝜑 = 𝜑𝑥 = 𝜑𝑡 = 𝜑𝑥𝑥 = 0,                                                           (1.2.13) 

Or, 𝜉1 = 𝜑 = 0,          𝜉2 = 𝑐.                                                                          (1.2.14) 

   Therefore, for arbitrary 𝑓(𝑥, 𝑢) 𝑎𝑛𝑑 𝑔(𝑥, 𝑢) Eq. (1.1.1).admits the one-dimensional 

Lie algebra 𝑔1, with the basis 

𝑋2 =
𝜕

𝜕𝑡
.                                                                                                        (1.2.15) 

  𝑔1 is called the principle Lie algebra for Eq. (1.1.1). So, it is remained to specify the 

coefficients 𝑓 𝑎𝑛𝑑 𝑔 such that Eq. (1.1.1) admits an extension of the principal algebra 

𝑔1 . Usually, the group classification is obtained by inspecting the determining 

equation. But in our case the complete solution of the determining equation (1.2.12) is 

a wasteful venture. Therefore, we don’t solve the determining equation but, instead we 

obtain a partial group classification of Eq. (1.1.1) via the so-called method of 

preliminary group classification. This method was applied when an equivalence group 

is generated by a finite-dimensional Lie algebra 𝑔𝑠. The essential part of the method is 

the classification of all nonsimilar subalgebras of 𝑔𝑠. Actually, the application of the 
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method is simple and effective when the classification is based on finite-dimensional 

equivalence algebra 𝑔𝑠. 

(1.2) Equivalence Transformations:  An equivalence transformation is a 

nondegenerate change of the variables 𝑡, 𝑥, 𝑢 taking any equation of the form 

(1.1.1) into an equation of the same form, generally speaking, with different 

𝑓(𝑢, 𝑥) 𝑎𝑛𝑑 𝑔(𝑥, 𝑢) . The set of all equivalence transformations forms an 

equivalence group s. we shall find a continuous subgroup 𝑠𝑐 of it making use 

of the infinitesimal method. We consider an operator of the group 𝑠𝑐in the form 

𝑌 = 𝜉1(𝑥, 𝑡, 𝑢)
𝜕

𝜕𝑥
+ 𝜉2(𝑥, 𝑡, 𝑢)

𝑦

𝜕𝑡
+ 𝜑(𝑥, 𝑡, 𝑢)

𝜕

𝜕𝑢
+ 𝜇(𝑥, 𝑡, 𝑢, 𝑓, 𝑔)

𝜕

𝜕𝑓

+ 𝑣(𝑥, 𝑡, 𝑢, 𝑓, 𝑔)
𝜕

𝜕𝑔
,                                                             (1.3.16) 

from the invariance conditions of Eq. (1.1.1) written the system: 

𝑢𝑡 − 𝑓(𝑥, 𝑢)𝑢𝑥
2 − 𝑔(𝑥, 𝑢)𝑢𝑥𝑥 = 0,                                                              (1.3.17) 

𝑓𝑡 = 𝑔𝑡 = 0,                                                                                                    (1.3.18) 

where 𝑢, 𝑓 𝑎𝑛𝑑𝑔 are considered as differential variables: 𝑢 on the space (𝑥, 𝑡) and 𝑓, 𝑔 

on the extended space (𝑥, 𝑡, 𝑢). The invariance conditions of the system (1.3.17) are  

𝑌(2)(𝑢𝑡 − 𝑓(𝑥, 𝑢)𝑢𝑥
2 − 𝑔(𝑥, 𝑢)𝑢𝑥𝑥) = 0.                                                         (1.3.19) 

𝑌(2)(𝑓𝑡) = 𝑌(2)(𝑔𝑡) = 0 , 

where 𝑌(2) is the prolongation of the operator (3.16): 

𝑌(2) = 𝑌 + 𝜑𝑥
𝜕

𝜕𝑢𝑥
+ 𝜑𝑡

𝜕

𝜕𝑢𝑡
+ 𝜑𝑥𝑡

𝜕

𝜕𝑢𝑥𝑡
𝜑𝑥𝑥

𝜕

𝜕𝑢𝑥𝑥
+ 𝜇𝑡

𝜕

𝜕𝑓𝑡
+ 𝑣𝑡

𝜕

𝜕𝑔𝑡
.     (1.3.20) 

   The coefficients 𝜑𝑥 , 𝜑𝑡, 𝜑𝑥𝑡 , 𝜑𝑡𝑡 are given in (1.2.7) and the other coefficients of 

(1.3.20) are obtained by applying the prolongation procedure to differential variables 

𝑓 𝑎𝑛𝑑 𝑔 with independent variables (𝑥, 𝑢). In view of (1.3.18), we have 

𝜇𝑡 = �̃�𝑡(𝜇) − 𝑓𝑥�̃�𝑡(𝜉1) − 𝑓𝑢�̃�𝑡(𝜑), 𝑣𝑡 = �̃�𝑡(𝑣) − 𝑔𝑥�̃�𝑡(𝜉1) − 𝑔𝑢�̃�𝑡(𝜑).   (1.3.21) 

Where �̃�𝑡 =
𝜕

𝜕𝑡
  . So, we have the following prolongation formulas: 
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𝜇𝑡 = 𝜇𝑡 − 𝑓𝑥𝜉𝑡
1 − 𝑓𝑢𝜑𝑡,                𝑣𝑡 = 𝑣𝑡 − 𝑔𝑥𝜉𝑡

1 − 𝑔𝑢𝜑𝑡.                     (1.3.22) 

The invariance conditions (3.19) give rise to 

𝜇𝑡 = 𝑣𝑡 = 0,                                                                                                    (1.3.23) 

that is hold for every 𝑓 𝑎𝑛𝑑 𝑔. We obtained 

𝜇𝑡 = 𝑣𝑡 = 0.                 𝜉𝑡
1 = 𝜑𝑡 = 0.                                                                 

Moreover we obtained 

𝜑𝑡 = 2𝑓(𝑥, 𝑢)𝑢𝑥𝜑𝑥 = 𝑔(𝑥, 𝑢)𝜑𝑥𝑥 − 𝜇𝑢𝑥
2 − 𝑣𝑢𝑥𝑥 − 𝑣 = 0.               (1.3.24) 

  The introducing the relation 𝑢𝑡 = 𝑓(𝑥, 𝑢)𝑢𝑥
2 + 𝑔(𝑥, 𝑢)𝑢𝑥𝑥 to eliminate 𝑢𝑡 we are left 

with a polynomial equation involving the various derivatives of 𝑢(𝑥, 𝑡)  whose 

coefficients are certain derivatives of 𝜉1, 𝜉2, 𝜑, 𝜇, and 𝑣. We can equate the individual 

coefficients to zero, leading to the complete set of determining equations: 

𝜉1 = 𝜉1(𝑥)                                                                                                           (1.3.25) 

𝜉2 = 𝜉𝑡 = 0                                                                                                       (1.3.26) 

𝜑𝑡𝑡 = 𝜉𝑡
2                                                                                                            (1.3.27) 

𝑣 = 𝑔𝜉𝑡
2 + 2𝜉𝑥

𝑖                                                                                                    (1.3.28) 

𝜇 = −𝑓𝜉𝑡
2 − 𝑓(𝜑𝑢 − 2𝜉𝑥

1) − 𝑔𝜑𝑢𝑢 .                                                              (1.3.29) 

So, we found that 

𝜉1(𝑥) = 𝑎(𝑥),          𝜉2 = 𝑐1𝑡 + 𝑐2,        𝜑(𝑥, 𝑢) = 𝑐1𝑢 + 𝑏(𝑥),                          

𝜇 = −2𝑓(𝑐1 − 𝑎(𝑥)),            𝑣 = −𝑔(𝑐1 − 𝑎𝑡(𝑥)),                                (1.3.30) 

with constants 𝑐1, 𝑐2 and two arbitrary functions 𝑎(𝑥)  𝑎𝑛𝑑 𝑏(𝑥)  𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡  

𝑏′′(𝑥) = 𝑐1 − 𝑎′(𝑥) . We summarized: The class of Eq. (1.1.2) has an infinite 

continuous group of equivalence transformations generated by the following 

infinitesimal operators: 
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𝑌 = 𝑎(𝑥)
𝜕

𝜕𝑥
+ (𝑐1𝑡 + 𝑐2)

𝜕

𝜕𝑡
+ (𝑐1𝑢 + 𝑏(𝑥))

𝜕

𝜕𝑢
− 2𝑓(𝑐1 − 𝑎(𝑥))

𝜕

𝜕𝑓
−             𝑔(𝑐1 −

𝑎′))
𝜕

𝜕𝑔
,                                                                                          (1.3.31)  

therefore the symmetry algebra of the Burgers' equation (1.1.2) is spanned by the vector 

fields 

𝑌1 = 𝑡
𝜕

𝜕𝑡
+ 𝑢

𝜕

𝜕𝑢
− 2𝑓

𝜕

𝜕𝑓
− 𝑔

𝜕

𝜕𝑔
,     𝑌2 =

𝜕

𝜕𝑡
,                                                        

𝑌3 = 𝑎(𝑥)
𝜕

𝜕𝑥
+ 2𝑓𝑎(𝑥)

𝜕

𝜕𝑓
+ 𝑔𝑎′(𝑥)

𝜕

𝜕𝑔
,    𝑌4 = 𝑏(𝑥)

𝜕

𝜕𝑢
.               (1.3.32) 

Table (a): Commutation relations satisfied by infinitesimal generators in (1.4.34) 

[, ] 𝑌1 𝑌2 𝑌3 𝑌4 𝑌5 

𝑌1 

𝑌2 

𝑌3 

𝑌4 

𝑌5 

𝑌1 

𝑌1 

𝑌1 

𝑌1 

𝑌1 

0 

0 

0 

−𝑌2 

0 

0 

0 

0 

−𝑌3 

0 

0 

𝑌2 

𝑌3 

0 

0 

0 

0 

0 

0 

0 

Table (b): Adjoint relations satisfied by infinitesimal generators in (1.4.34) 

[, ] 𝑌1 𝑌2 𝑌3 𝑌4 𝑌5 

𝑌1 

𝑌2 

𝑌3 

𝑌4 

𝑌5 

𝑌1 

𝑌1 

𝑌1 

𝑌1 

𝑌1 

𝑌2 

𝑌2 

𝑌2 

𝑒𝛼𝑌2 

𝑌2 

 

𝑌3 

𝑌3 

𝑌3 

𝑒𝛼𝑌3 

𝑌3 

𝑌4 

𝑌4 − 𝑠𝑌2 

𝑌4 − 𝑠𝑌3 

𝑌4 

𝑌4 

𝑌5 

𝑌5 

𝑌5 

𝑌5 

𝑌5 

    Moreover, in the group of equivalence transformations there are included also 

discrete transformations, i.e. reflections 

𝑡 → −𝑡,       𝑥 → −𝑥,       𝑢 → −𝑢,      𝑓 → −𝑓,        𝑔 → −𝑔.                (1.3.33) 

(1.4) Group Classification of Lie Algebras: 

  One can observe in many applications of group analysis that most of extensions of the 

principal Lie algebra admitted by the equation under consideration are taken from the 
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equivalence algebra 𝑔𝑠 . We call these extensions s-extensions of the principal Lie 

algebra. The classification of all nonequivalent equations (with respect to a given 

equivalence group 𝐺𝑠.) admitting s-extensions of the principal Lie algebra is called a 

preliminary group classification. Here, 𝐺𝑠  is not necessary the largest equivalence 

group but, it can be any subgroup of the group of all equivalence transformations. So, 

we can take any finite-dimensional subalgebra (desirable as large as possible) of an 

infinite-dimensional algebra with basis (3.32) and use it for a preliminary group 

classification. We select the subalgebra 𝑔5 spanned on the following operators: 

𝑌1 =
𝜕

𝜕𝑥
,                𝑌2 =

𝜕

𝜕𝑡
,                 𝑌3 =

𝜕

𝜕𝑢
, 

𝑌4 = 𝑡
𝜕

𝜕𝑡
+ 𝑢

𝜕

𝜕𝑢
− 2𝑓

𝜕

𝜕𝑓
− 𝑔

𝜕

𝜕𝑔
.                  𝑌5 =

𝜕

𝜕𝑥
+ 2𝑓

𝜕

𝜕𝑓
+ 𝑔

𝜕

𝜕𝑔
.  (1.4.34) 

   The communication relations between these vector fields were given in table (a). To 

each s-parameter subgroup there corresponds a funnily of group invariant solutions. 

So, in general, it is quite impossible to determine all possible group-invariant solutions 

of a PDE. In order to minimize this search, it is useful to construct the optimal system 

of solutions. It is well known that the problem of the construction of the optimal system 

of solutions is equivalent to that of the construction of the optimal system of 

subalgebras, we will deal with the construction of the optimal system of subalgebras 

of 𝑔𝑠.  

   Let 𝐺  be a Lie group. With g its Lie algebra. Each element 𝑇 ∈ 𝐺  yields inner 

automorphism 𝑇𝑎 → 𝑇𝑇𝑎𝑇−1  of the group G. Every automorphism of the group G 

induces an automorphism of g. The set of all this automorphism is a Lie group called 

the adjoint group 𝐺𝐴 . The Lie algebra of 𝐺𝐴 is the adjoint algebra of g, defined as 

follows. Let us have two infinitesimal generators 𝑋, 𝑌 ∈ 𝐿 . The linear mapping 

𝐴𝑑𝑋(𝑌): 𝑌 → [𝑋, 𝑌] is an automorphism of g, called the inner derivation of g. The set 

of all inner derivations 𝑎𝑑𝑋(𝑌)(𝑋, 𝑌 ∈) together with the Lie bracket [𝐴𝑑𝑋, 𝐴𝑑𝑌] =

𝐴𝑑[𝑋, 𝑌] is a Lie algebra 𝑔𝐴  called the adjoint algebra of g. Clearly 𝑔𝐴  is the Lie 

algebra of 𝐺𝐴 . Two subalgebras in g are conjugate (or similar) if there is a 

transformation of 𝐺𝐴  which takes one subalgebra into the other. The collection of 

pairwise non-conjugate s-dimensional subalgebras is the optimal system of 

subalgebras of order s. The construction of one-dimensional optimal system of 
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subalgebras can be carried out by using a global matrix of the adjoint transformations 

as suggested by L.V.Ovsiannikov (1982). The latter problem tends to determine a list 

(that is called an optimal system) of conjugacy inequivalent subalgebras with the 

property that any other subalgebra is equivalent to a unique member of the list under 

some element of the adjoint representation i.e. ℎ̃𝐴𝑑(𝑔)ℎ for some g of a considered 

Lie group. Thus we will deal with the construction of the optimal system of subalgebras 

of 𝑔5. The adjoint action is given by the Lie series 

𝐴𝑑(𝑒𝑥𝑝(𝑠𝑌𝑖))𝑌𝑗 = 𝑌𝑗 − 𝑠[𝑌𝑖, 𝑌𝑗] +
𝑠2

2
[𝑌𝑖, [𝑌𝑖, 𝑌𝑗]] − ⋯,                                 (1.4.35) 

where s is a parameter and 𝑖, 𝑗 = 1, … ,5. The adjoint representations of 𝑔5 is list in 

table (b), it consists the separate adjoint actions of each element of 𝑔5 of all other 

elements. 

Theorem (1.4.1): An optimal system of one-dimensional Lie subalgebras of general 

Burgers' equation (1.1.2) is provided by those generated by  

(1) 𝑌4 = 𝑌1 = 𝜕𝑡, 

(2) 𝑌2 = 𝑌2 = 𝜕𝑥, 

(3) 𝑌3 = 𝑌3 = 𝜕𝑢, 

(4) 𝑌4 = 𝑌4 = 𝑡𝜕𝑡 + 𝑢𝜕𝑢 − 2𝑓𝜕𝑓 − 𝑔𝜕𝑔, 

(5) 𝑌5 = 𝑌5 = 𝜕𝑥 + 2𝑓𝜕𝑓 + 𝑔𝜕𝑔, 

(6) 𝑌6 = 𝑌1 + 𝑌2 = 𝜕𝑡 + 𝜕𝑥, 

(7) 𝑌7 = −𝑌1 + 𝑌2 = −𝜕𝑡 + 𝜕𝑥, 

(8) 𝑌8 = 𝑌1 + 𝑌2 = (𝑡 + 1)𝜕𝑡 + 𝑢𝜕𝑢 − 2𝑓𝜕𝑓 − 𝑔𝜕𝑔, 

(9) 𝑌9 = −𝑌1 + 𝑌4 = (𝑡 − 1)𝜕𝑡 + 𝑢𝜕𝑢 − 2𝑓𝜕𝑓 − 𝑔𝜕𝑔, 

(10) 𝑌10 = 𝑌1 + 𝑌5 = 𝜕𝑡 + 𝜕𝑥 + 2𝑓𝜕𝑓 + 𝑔𝜕𝑔, 

(11) 𝑌11 = −𝑌1 + 𝑌5 = −𝜕𝑡 + 𝜕𝑥 + 2𝑓𝜕𝑓 + 𝑔𝜕𝑔, 

(12) 𝑌12 = 𝑌4 + 𝑌5 = 𝑡𝜕𝑡 + 𝜕𝑥 + 𝑢𝜕𝑢, 

(13) 𝑌13 = −𝑌4 + 𝑌5 = −𝑡𝜕𝑡 + 𝜕𝑥 − 𝑢𝜕𝑢 + 4𝑓𝜕𝑓 + 2𝑔𝜕𝑔, 

(14) 𝑌14 = 𝑌1 + 𝑌4 + 𝑌5 = (𝑡 + 1)𝜕𝑡 + 𝜕𝑥 + 𝑢𝜕𝑢, 

(15) 𝑌15 = 𝑌1 + 𝑌4 + 𝑌5 = (𝑡 + 1)𝜕𝑡 + 𝜕𝑥 + 𝑢𝜕𝑢, 

(16) 𝑌16 = 𝑌1 − 𝑌4 + 𝑌5 = (𝑡 + 1)𝜕𝑡 − 𝑢𝜕𝑢 + 2𝑓𝜕𝑓 + 𝑔𝜕𝑔,       (1.4.36) 

(17) 𝑌17 = −𝑌1 − 𝑌4 + 𝑌5 = −(1 + 𝑡)𝜕𝑡 + 𝜕𝑥 − 𝑢𝜕𝑢 + 4𝑓𝜕𝑓 + 2𝑔𝜕𝑔, 
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  Proof: Let 𝑔4  is the symmetry algebra of Eq. (1.1.2) with adjoint representation 

determined in table (b) and  

𝑌 = 𝑎1𝑌1 + 𝑎2𝑌2 + 𝑎3𝑌3 + 𝑎4𝑌4 + 𝑎5𝑌5                                            (1.4.37) 

is a nonzero vector field of g. We will simplify as many of the coefficients 𝑎𝑖, 𝑖 =

1, … ,5, as possible through proper adjoint applications on Y. We follow our aim in the 

below easy cases: 

case1: At first,  we assume that 𝑎5 ≠ 0. Scaling Y if necessary, also we can assume 

that 𝑎5 = 1 and so we get 

𝑌 = 𝑎1𝑌1 + 𝑎2𝑌2 + 𝑎3𝑌3 + 𝑎4𝑌4 + 𝑌5.                                            (1.4.38) 

  Using the table of adjoint (table (b)) . If we act on Y with 𝐴𝑑(exp(𝑎2𝑌2)),  the 

coefficient of 𝑌2 can be vanished: 

𝑌′ = 𝑎1𝑌1 + 𝑎3𝑌3 + 𝑎4𝑌4 + 𝑌5.                                                              (1.4.39) 

Then we apply 𝐴𝑑(exp(𝑎3𝑌3)) 𝑜𝑛 𝑌′ to cancel the coefficient of 𝑌3: 

𝑌′′ = 𝑎1𝑌1 + 𝑎4𝑌4 + 𝑌5.                                                                          (1.4.40) 

Case 1a:  If 𝑎1, 𝑎4 ≠ 0  then we can make the coefficients of 𝑌1 𝑎𝑛𝑑 𝑌4 𝑒𝑖𝑡ℎ𝑒𝑟 +

1 𝑜𝑟 − 1.  Thus any one-dimensional subalgebra generated by 𝑌 𝑤𝑖𝑡ℎ 𝑎3, 𝑎1 ≠ 0  is 

equivalent to one generated by ±𝑌1 ± 𝑌4 + 𝑌5  which introduce parts 

(14), (15), (16) 𝑎𝑛𝑑 (17) of the theorem. 

Case 𝟏𝒃 : For 𝑎1 = 0, 𝑎4 ≠ 0  we can see that each one-dimensional subalgebra 

generated by Y is equivalent to one generated by ±𝑌4 + 𝑌5 which introduce parts (12) 

and (13) of the theorem. 

Case 1c: For 𝑎1 ≠ 0, 𝑎4 = 0  we can see that each one-dimensional subalgebra 

generated by Y is equivalent to one generated by ±𝑌1 + 𝑌5 which introduce parts (10) 

and (11) of the theorem. 

Case 2: The remaining one-dimensional subalgebras are spanned by vector fields of 

the form Y with 𝑎5 = 0. 
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Case 2a: If 𝑎4 ≠ 0 then by scaling Y, we can assume that 𝑎4 = 0. Now by the action 

of 𝐴𝑑(𝑒𝑥𝑝𝑎2𝑌2)) on Y, we can cancel the coefficient of 𝑌2: 

�̅� = 𝑎1𝑌1 + 𝑎3𝑌3 + 𝑌4.                                                                                        (1.4.41) 

Then by applying 𝐴𝑑(exp(𝑎3𝑌3)) 𝑜𝑛 �̅� the coefficient of 𝑌3 can be vanished and we 

have 

�̃�′ = 𝑎1𝑌1 + 𝑌4.                                                                                                  (1.4.42) 

The one-dimensional subalgebra generated by Y is equivalent to one generated by 

±𝑌1 + 𝑌4 which introduce parts (8) and (9) of the theorem. 

Case 2b:  Let 𝑎4 = 0 𝑡ℎ𝑒𝑛 𝑌 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑓𝑜𝑟𝑚 

�̃� = 𝑎1𝑌1 + 𝑎2𝑌2 + 𝑎3𝑌3.                                                                                    (1.4.43) 

   Suppose that 𝑎2 ≠ 0 then if necessary we can let it equal to 1 and mew obtain 

�̃�′ = 𝑎1𝑌1 + 𝑌2 + 𝑎3𝑌3.                                                                                      (1.4.44) 

  By acting 𝐴𝑑(exp(𝑎3𝑌3)) 𝑜𝑛 �̃�′, 𝑖𝑡 𝑐ℎ𝑎𝑛𝑔𝑒𝑑 𝑡𝑜 𝑎1𝑌1 + 𝑌2: 

Case 2b-1: Let 𝑎1 be nonzero. In this case we can make the coefficient of 𝑌1 𝑖𝑛 �̃� either 

+1 𝑜𝑟 − 1 and find (6) and (7) sections of the theorem. 

Case 2b-2: If 𝑎1 is zero then 𝑌2 is remained. Hence this case suggests part 2). 

Case 2c: Finally if in the latter case 𝑎2  be zero, then no further simplification is 

possible and then  Y is one of cases of (1.4.36). There is not any more possible case 

for studying and the proof is complete. 

 The coefficients 𝑓, 𝑔 of Eq. (1.1.2) depend on the variables 𝑥, 𝑢. Therefore, we take 

their optimal system's projections on the space (𝑥, 𝑢, 𝑓, 𝑔) . The nonzero in 𝑥 −

𝑎𝑥𝑖𝑠 𝑜𝑟 𝑢 − 𝑎𝑥𝑖𝑠 projections of (1.4.36) are: 

(1) 𝑍1 − 𝑌2 = 𝑌6 − 𝑌7 = 𝜕𝑥, 

(2) 𝑍2 = 𝑌3 = 𝜕𝑢, 

(3) 𝑍3 = 𝑌4 = 𝑌8 = 𝑌9 = −𝑌16 = 𝑢𝜕𝑢 − 2𝑓𝜕𝑓 − 𝑔𝜕𝑔, 

(4) 𝑍4 = 𝑌5 = 𝑌10 = 𝑌11 = 𝜕𝑥 + 2𝑓𝜕𝑓 + 𝑔𝜕𝑔, 
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(5) 𝑍5 = 𝑌12 = 𝑌14 = 𝑌15 = 𝜕𝑥 + 𝑢𝜕𝑢,                                                        (1.4.45) 

(6)  𝑍6 = 𝑌13 = 𝑌17 = 𝜕𝑥 − 𝑢𝜕𝑢 + 4𝑓𝜕𝑓 + 2𝑔𝜕𝑔. 

Proposition (1.4.1): Let 𝑔𝑚 = 〈𝑌1, … , 𝑌𝑚〉, be an m-dimensional algebra. Denote by 

𝑌𝑖(𝑖 = 1, … , 𝑟, 0 < 𝑟 ≤ 𝑚, 𝑟 ∈ 𝑁 an optimal system of one-dimensional subalgebras 

of 𝑔𝑚 𝑎𝑛𝑑 𝑏𝑦 𝑍𝑖(𝑖 = 1, … , 𝑡, 0 < 𝑡 ≤ 𝑟, 𝑡 ∈ 𝑁)  the projections of 𝑌𝑖. 𝑖, 𝑒, 𝑍𝑖 =

𝑝𝑟(𝑌𝑖) . If equations 

𝑓 = ∅(𝑥, 𝑢),        𝑔 = 𝜓(𝑥, 𝑢),                                                                                (1.4.46) 

Table c: The result of the classification  

N          Z Invariant  Equation  Additional operator 𝑋(2) 

1 

2 

3 

4 

5 

6 

𝑍1 

𝑍2 

𝑍3 

𝑍4 

𝑍5 

𝑍6 

𝑢 

𝑥 

𝑥 

𝑢 

�̅�
𝑢
𝑥  

−
1

𝑢
 

𝑢𝑡

= 𝜙𝑢𝑥
2 + 𝜓𝑢𝑥𝑥 

𝑢𝑡

= 𝜙𝑢𝑥
2 + 𝜓𝑢𝑥𝑥 

𝑢𝑡

= 𝑢2𝜙𝑢𝑥
2

+ 𝑒𝑥𝜓𝑢𝑥𝑥 

𝑢𝑥

= 𝑒𝑥2
𝜙𝑢𝑥

2

+ 𝑢𝜓𝑢𝑥𝑥 

𝑢𝑡

= 𝜙𝑢𝑥
2 + 𝑢𝜓𝑢𝑥𝑥 

𝑢𝑡

= 𝑒𝑥4
𝜙𝑢𝑥

2

+ 𝑒𝑥2
𝜓𝑢𝑥𝑥 

𝜕𝑥, 𝜕𝑡 + 𝜕𝑥, −𝜕𝑡 + 𝜕𝑥 

𝜕𝑢 

𝑡𝜕𝑡 + 𝑢𝜕𝑢, (𝑡 + 1)𝜕𝑡

+ 𝑢𝜕𝑢, (𝑡 − 1)𝜕𝑡

+ 𝑢𝜕𝑢 

𝜕𝑥, 𝜕𝑡 + 𝜕𝑥, −𝜕𝑡 + 𝜕𝑥 

𝑡𝜕𝑡 + 𝜕𝑥 + 𝑢𝜕𝑢, (𝑡 + 1)𝜕𝑡 + 𝜕𝑥

+ 𝑢𝜕𝑢 

−𝑡𝜕𝑡 + 𝜕𝑥 − 𝑢𝜕𝑢, −(1 + 𝑡)𝜕𝑡 + 𝜕𝑥

− 𝑢𝜕𝑢 

 

 

     Are invariant with respect to the optimal system 𝑍𝑖 then the equation 

𝑢𝑡 = 𝜙(𝑥, 𝑢)𝑢𝑥
2 + 𝜓(𝑥, 𝑢)𝑢𝑥𝑥,                                                                             (1.4.47) 

Admits the operators 𝑋𝑖 = 𝑝𝑟𝑜𝑗𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑌𝑖 𝑜𝑛 (𝑡, 𝑥, 𝑢). 
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(5) Conclusion: Finally the classical Lie method and the group classification for the 

class of Burgers' equation (1.1.2) and investigated the algebraic structure of the 

symmetry groups for this equation, is obtained. The classification is obtained by 

constructing an optimal system with the aid propositions (1.4.2). The result of the work 

is summarized in table c. of course it is also possible to obtain the corresponding 

reduced equations for all the cases in the classification reported in table c. we omitted 

these for brevity. 
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